Talking about Watermelon Game game, Box2D, Game development, HTML5, Javascript, Phaser and TypeScript.
The basic engine for the Watermelon Game has been already created in the first step of this tutorial series, but I needed to add some features before turning it into an actual playable prototype.
First, I wanted matches to create a little explosion, pushing away the balls near the center of the explosion.
It’s not necessary, but I want merging balls to merge with some kind of explosion effect, so here it is.
All posts in this tutorial series:
Step 1: setup and basic game mechanics.
Step 2: delays and explosions.
Step 3: particle effects and more space for customization.
Step 4: how to handle user input.
Step 5: scrolling background, “next” icon and game over condition.
Step 6: saving best score with local storage and using object pooling to save resources.
Step 7: square and pentagon bodies added. Get the full source code on Gumroad.
Then, I added some delays to the game. Now merging balls disappear after 1/10 second, and the new bigger ball appears after 2/10 second.
This will give me the time to add particle effects and above all to slow down a little bit the chain reaction occurring when multiple balls merge one after another.
Two small changes that considerably altered the appearance of the game.
There is still no interactivity, but it looks as I wanted and I am going to add player controls and explosions in next step.
To use Box2D powered by Planck.js you should install this package with:
npm install –save planck
If you don’t know how to install a npm package or set up a project this way, I wrote a free minibook explaining everything you need to know to get started.
I also added some more comments to source code, which consists in one HTML file, one CSS file and four TypeScript files:
index.html
The web page which hosts the game, to be run inside thegame element.
<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="initial-scale=1, maximum-scale=1">
<link rel="stylesheet" href="style.css">
<script src="main.js"></script>
</head>
<body>
<div id = "thegame"></div>
</body>
</html>
style.css
The cascading style sheets of the main web page.
* {
padding : 0;
margin : 0;
}
body {
background-color: #000000;
}
canvas {
touch-action : none;
-ms-touch-action : none;
}
gameOptions.ts
Configurable game options. It’s a good practice to place all configurable game options, if possible, in a single and separate file, for a quick tuning of the game. I also grouped the variables to keep them more organized.
// CONFIGURABLE GAME OPTIONS
// changing these values will affect gameplay
export const GameOptions : any = {
// world gravity
gravity : 8,
// pixels / meters ratio
worldScale : 30,
// colors of various balls
colors : [0x0078ff, 0xbd00ff, 0xff9a00, 0x01ff1f, 0xe3ff00, 0xff0000, 0xffffff, 0x00ecff, 0xff00e7, 0x888888],
// blast radius. Actually is not a radius, but it works. In pixels.
blastRadius : 100,
// blast force applied
blastImpulse : 2
}
main.ts
This is where the game is created, with all Phaser related options.
// MAIN GAME FILE
// modules to import
import Phaser from 'phaser';
import { PlayGame } from './playGame';
// object to initialize the Scale Manager
const scaleObject : Phaser.Types.Core.ScaleConfig = {
mode : Phaser.Scale.FIT,
autoCenter : Phaser.Scale.CENTER_BOTH,
parent : 'thegame',
width : 800,
height : 600
}
// game configuration object
const configObject : Phaser.Types.Core.GameConfig = {
type : Phaser.AUTO,
backgroundColor : 0x222222,
scale : scaleObject,
scene : [PlayGame]
}
// the game itself
new Phaser.Game(configObject);
playGame.ts
Main game file, all game logic is stored here.
// THE GAME ITSELF
import Planck, { Box, Circle } from 'planck';
import { GameOptions } from './gameOptions';
import { toMeters, toPixels } from './planckUtils';
enum bodyType {
Ball,
Wall
}
// this class extends Scene class
export class PlayGame extends Phaser.Scene {
constructor() {
super({
key : 'PlayGame'
});
}
world : Planck.World;
contactManagement : any[];
ballsAdded : number;
ids : number[];
// method to be called once the instance has been created
create() : void {
// initialize global variables
this.ids = [];
this.ballsAdded = 0;
this.contactManagement = [];
// create a Box2D world with gravity
this.world = new Planck.World(new Planck.Vec2(0, GameOptions.gravity));
// create three walls
this.createWall(this.game.config.width as number / 2, this.game.config.height as number - 10, this.game.config.width as number, 10);
this.createWall(10, this.game.config.height as number / 2, 10, this.game.config.height as number);
this.createWall(this.game.config.width as number - 10, this.game.config.height as number / 2, 10, this.game.config.height as number);
// create a time event which calls createBall method every 1000 milliseconds, looping forever
this.time.addEvent({
delay : 1000,
callback : () => {
this.createBall(Phaser.Math.Between(30, this.game.config.width as number - 30), -10, 1);
},
loop : true
});
// this is the collision listener used to process contacts
this.world.on('pre-solve', (contact : Planck.Contact) => {
// get both bodies user data
const userDataA : any = contact.getFixtureA().getBody().getUserData();
const userDataB : any = contact.getFixtureB().getBody().getUserData();
// get the contact point
const worldManifold : Planck.WorldManifold = contact.getWorldManifold(null) as Planck.WorldManifold;
const contactPoint : Planck.Vec2Value = worldManifold.points[0] as Planck.Vec2Value;
// three nested "if" just to improve readability, to check for a collision we need:
// 1 - both bodies must be balls
if (userDataA.type == bodyType.Ball && userDataB.type == bodyType.Ball) {
// both balls must have the same value
if (userDataA.value == userDataB.value) {
// balls ids must not be already present in the array of ids
if (this.ids.indexOf(userDataA.id) == -1 && this.ids.indexOf(userDataB.id) == -1) {
// add bodies ids to ids array
this.ids.push(userDataA.id)
this.ids.push(userDataB.id)
// add a contact management item with both bodies to remove, the contact point, the new value of the ball and both ids
this.contactManagement.push({
body1 : contact.getFixtureA().getBody(),
body2 : contact.getFixtureB().getBody(),
point : contactPoint,
value : userDataA.value + 1,
id1 : userDataA.id,
id2 : userDataB.id
})
}
}
}
});
}
// method to create a ball
createBall(posX : number, posY : number, value : number) : void {
const circle : Phaser.GameObjects.Arc = this.add.circle(posX, posY, value * 10, GameOptions.colors[value - 1], 0.5);
circle.setStrokeStyle(1, GameOptions.colors[value - 1]);
const ball : Planck.Body = this.world.createDynamicBody({
position : new Planck.Vec2(toMeters(posX), toMeters(posY))
});
ball.createFixture({
shape : new Circle(toMeters(value * 10)),
density : 1,
friction : 0.3,
restitution : 0.1
});
ball.setUserData({
sprite : circle,
type : bodyType.Ball,
value : value,
id : this.ballsAdded
})
this.ballsAdded ++;
}
// method to create a wall
createWall(posX : number, posY : number, width : number, height : number) : void {
const rectangle : Phaser.GameObjects.Rectangle = this.add.rectangle(posX, posY, width * 2, height * 2, 0xffffff);
const floor : Planck.Body = this.world.createBody({
position : new Planck.Vec2(toMeters(posX), toMeters(posY))
});
floor.createFixture({
shape : new Box(toMeters(width), toMeters(height)),
filterGroupIndex : 1
})
floor.setUserData({
sprite : rectangle,
type : bodyType.Wall
})
}
// method to destroy a ball
destroyBall(ball : Planck.Body, id : number) : void {
const userData : any = ball.getUserData();
userData.sprite.destroy();
this.world.destroyBody(ball);
this.ids.splice(this.ids.indexOf(id), 1);
}
// method to be executed at each frame
update(totalTime : number, deltaTime : number) : void {
// advance world simulation
this.world.step(deltaTime / 1000, 10, 8);
this.world.clearForces();
// os there any contact to manage?
if (this.contactManagement.length > 0) {
// loop through all contacts
this.contactManagement.forEach((contact : any) => {
// destroy the balls after some delay, useful to display explosions or whatever
this.time.addEvent({
delay: 100,
callback: (() => {
this.destroyBall(contact.body1, contact.id1);
this.destroyBall(contact.body2, contact.id2);
})
})
// determining blast radius, which is actually a square, but who cares?
const query : Planck.AABB = new Planck.AABB(
new Planck.Vec2(contact.point.x - toMeters(GameOptions.blastRadius), contact.point.y - toMeters(GameOptions.blastRadius)),
new Planck.Vec2(contact.point.x + toMeters(GameOptions.blastRadius), contact.point.y + toMeters(GameOptions.blastRadius))
);
// query the world for fixtures inside the square, aka "radius"
this.world.queryAABB(query, function(fixture : Planck.Fixture) {
const body : Planck.Body = fixture.getBody();
const bodyPosition : Planck.Vec2 = body.getPosition();
// just in case you need the body distance from the center of the blast. I am not using it.
const bodyDistance : number = Math.sqrt(Math.pow(bodyPosition.x - contact.point.x, 2) + Math.pow(bodyPosition.y - contact.point.y, 2));
const angle : number = Math.atan2(bodyPosition.y - contact.point.y, bodyPosition.x - contact.point.x);
// the explosion effect itself is just a linear velocity applied to bodies
body.setLinearVelocity(new Planck.Vec2(GameOptions.blastImpulse * Math.cos(angle), GameOptions.blastImpulse * Math.sin(angle)));
return true;
});
// little delay before creating next ball, be used for a spawn animation
this.time.addEvent({
delay: 200,
callback: (() => {
this.createBall(toPixels(contact.point.x), toPixels(contact.point.y), contact.value);
})
})
})
this.contactManagement = [];
}
// adjust bodies position
for (let body : Planck.Body = this.world.getBodyList() as Planck.Body; body; body = body.getNext() as Planck.Body) {
const bodyPosition : Planck.Vec2 = body.getPosition();
const bodyAngle : number = body.getAngle();
const userData : any = body.getUserData();
userData.sprite.x = toPixels(bodyPosition.x);
userData.sprite.y = toPixels(bodyPosition.y);
userData.sprite.rotation = bodyAngle;
}
}
}
plankUtils.ts
Useful functions to be used in Planck, just to convert pixels to meters and meters to pixels.
import { GameOptions } from './gameOptions';
// simple function to convert pixels to meters
export function toMeters(n : number) : number {
return n / GameOptions.worldScale;
}
// simple function to convert meters to pixels
export function toPixels(n : number) : number {
return n * GameOptions.worldScale;
}
The physics section is ready, in next step I’ll add controls and fancy effects, meanwhile download the source code.
Never miss an update! Subscribe, and I will bother you by email only when a new game or full source code comes out.