Talking about Risky Road game, Game development, HTML5, Javascript and Phaser.
I got positive feedback for my Risky Road prototype built with Phaser, Matter physics and Simplify.js, but there was a main issue: while the original game was playable in portrait mode, my prototype works in landscape mode.
You may say this is not an issue but a feature, and you can play the game by simply rotating your phone to landscape mode, but hyper casual games work better in portrait mode, just look at Ketchapp and Voodoo games and tell me if you see more portrait or landscape games.
This is still not an issue, we just have to change game size and we are ready to publish the game.
Not really.
In this kind of games, you need to have a wide view of the terrain to know which slopes you are going to approach. The fastest the car, the wider the terrain should be.
And this is when camera zoom comes into play.
Have a look at the game (due to the nature of Matter.js debug draw, it will look better as a standalone page):
The game starts with the cart in front of the screen and no zoom, and zooms out as the cart gains speed.
Everything is managed by zoomTo
method which zooms to a specific value and you can also set the duration and the ease.
But the most important feature is you can set a flag to decide if the zoom effect must start immediately, even if already running, or not.
This allows me to call zoomTo
method at each frame without worring if I am already zooming. Setting zoom duration to 1 second gives a good result.
Look at the completely commented source code:
var game;
var gameOptions = {
// start vertical point of the terrain, 0 = very top; 1 = very bottom
startTerrainHeight: 0.5,
// max slope amplitude, in pixels
amplitude: 100,
// slope length range, in pixels
slopeLength: [150, 350],
// a mountain is a a group of slopes.
mountainsAmount: 3,
// amount of slopes for each mountain
slopesPerMountain: 6,
// car acceleration
carAcceleration: 0.01,
// maximum car velocity
maxCarVelocity: 1
}
window.onload = function() {
let gameConfig = {
type: Phaser.AUTO,
backgroundColor: 0x75d5e3,
scale: {
mode: Phaser.Scale.FIT,
autoCenter: Phaser.Scale.CENTER_BOTH,
parent: "thegame",
width: 750,
height: 1334
},
physics: {
default: "matter",
matter: {
debug: true,
debugBodyColor: 0x000000
}
},
scene: playGame
}
game = new Phaser.Game(gameConfig);
window.focus();
}
class playGame extends Phaser.Scene{
constructor(){
super("PlayGame");
}
create(){
// creation of pool arrays
this.bodyPool = [];
this.bodyPoolId = [];
// array to store mountains
this.mountainGraphics = [];
// mountain start coordinates
this.mountainStart = new Phaser.Math.Vector2(0, 0);
// loop through all mountains
for(let i = 0; i < gameOptions.mountainsAmount; i++){
// each mountain is a graphics object
this.mountainGraphics[i] = this.add.graphics();
// generateTerrain is the method to generate the terrain. The arguments are the graphics object and the start position
this.mountainStart = this.generateTerrain(this.mountainGraphics[i], this.mountainStart);
}
// method to add the car, arguments represent x and y position
this.addCar(250, game.config.height / 2 - 70);
// the car is not accelerating
this.isAccelerating = false;
// input management
this.input.on("pointerdown", this.accelerate, this);
this.input.on("pointerup", this.decelerate, this);
// collision check between the diamond and the car. Any other diamond collision is not allowed
this.matter.world.on("collisionstart", function(event, bodyA, bodyB){
if((bodyA.label == "diamond" && bodyB.label != "car") || (bodyB.label == "diamond" && bodyA.label != "car")){
this.scene.start("PlayGame")
}
}.bind(this));
}
// method to generate the terrain. Arguments: the graphics object and the start position
generateTerrain(graphics, mountainStart){
// array to store slope points
let slopePoints = [];
// variable to count the amount of slopes
let slopes = 0;
// slope start point
let slopeStart = new Phaser.Math.Vector2(0, mountainStart.y);
// set a random slope length
let slopeLength = Phaser.Math.Between(gameOptions.slopeLength[0], gameOptions.slopeLength[1]);
// determine slope end point, with an exception if this is the first slope of the fist mountain: we want it to be flat
let slopeEnd = (mountainStart.x == 0) ? new Phaser.Math.Vector2(slopeStart.x + gameOptions.slopeLength[1] * 1.5, 0) : new Phaser.Math.Vector2(slopeStart.x + slopeLength, Math.random());
// current horizontal point
let pointX = 0;
// while we have less slopes than regular slopes amount per mountain...
while(slopes < gameOptions.slopesPerMountain){
// slope interpolation value
let interpolationVal = this.interpolate(slopeStart.y, slopeEnd.y, (pointX - slopeStart.x) / (slopeEnd.x - slopeStart.x));
// if current point is at the end of the slope...
if(pointX == slopeEnd.x){
// increase slopes amount
slopes ++;
// next slope start position
slopeStart = new Phaser.Math.Vector2(pointX, slopeEnd.y);
// next slope end position
slopeEnd = new Phaser.Math.Vector2(slopeEnd.x + Phaser.Math.Between(gameOptions.slopeLength[0], gameOptions.slopeLength[1]), Math.random());
// no need to interpolate, we use slope start y value
interpolationVal = slopeStart.y;
}
// current vertical point
let pointY = game.config.height * gameOptions.startTerrainHeight + interpolationVal * gameOptions.amplitude;
// add new point to slopePoints array
slopePoints.push(new Phaser.Math.Vector2(pointX, pointY));
// move on to next point
pointX ++ ;
}
// simplify the slope
let simpleSlope = simplify(slopePoints, 1, true);
// place graphics object
graphics.x = mountainStart.x;
// draw the ground
graphics.clear();
graphics.moveTo(0, game.config.height * 2);
graphics.fillStyle(0x654b35);
graphics.beginPath();
simpleSlope.forEach(function(point){
graphics.lineTo(point.x, point.y);
}.bind(this))
graphics.lineTo(pointX, game.config.height * 2);
graphics.lineTo(0, game.config.height * 2);
graphics.closePath();
graphics.fillPath();
// draw the grass
graphics.lineStyle(16, 0x6b9b1e);
graphics.beginPath();
simpleSlope.forEach(function(point){
graphics.lineTo(point.x, point.y);
})
graphics.strokePath();
// loop through all simpleSlope points starting from the second
for(let i = 1; i < simpleSlope.length; i++){
// define a line between previous and current simpleSlope points
let line = new Phaser.Geom.Line(simpleSlope[i - 1].x, simpleSlope[i - 1].y, simpleSlope[i].x, simpleSlope[i].y);
// calculate line length, which is the distance between the two points
let distance = Phaser.Geom.Line.Length(line);
// calculate the center of the line
let center = Phaser.Geom.Line.GetPoint(line, 0.5);
// calculate line angle
let angle = Phaser.Geom.Line.Angle(line);
// if the pool is empty...
if(this.bodyPool.length == 0){
// create a new rectangle body
this.matter.add.rectangle(center.x + mountainStart.x, center.y, distance, 10, {
isStatic: true,
angle: angle,
friction: 1,
restitution: 0
});
}
// if the pool is not empty...
else{
// get the body from the pool
let body = this.bodyPool.shift();
this.bodyPoolId.shift();
// reset, reshape and move the body to its new position
this.matter.body.setPosition(body, {
x: center.x + mountainStart.x,
y: center.y
});
let length = body.area / 10;
this.matter.body.setAngle(body, 0)
this.matter.body.scale(body, 1 / length, 1);
this.matter.body.scale(body, distance, 1);
this.matter.body.setAngle(body, angle);
}
}
// assign a custom "width" property to the graphics object
graphics.width = pointX - 1
// return the coordinates of last mountain point
return new Phaser.Math.Vector2(graphics.x + pointX - 1, slopeStart.y);
}
// method to build the car
addCar(posX, posY){
// car is made by three rectangle bodies which will be merged into a compound object
let floor = Phaser.Physics.Matter.Matter.Bodies.rectangle(posX, posY, 100, 10, {
label: "car"
});
let rightBarrier = Phaser.Physics.Matter.Matter.Bodies.rectangle(posX + 45, posY - 15, 10, 20, {
label: "car"
});
let leftBarrier = Phaser.Physics.Matter.Matter.Bodies.rectangle(posX - 45, posY - 15, 10, 20, {
label: "car"
});
// this is how we create the compound object
this.body = Phaser.Physics.Matter.Matter.Body.create({
// array of single bodies
parts: [floor, leftBarrier, rightBarrier],
friction: 1,
restitution: 0
});
// add the body to the world
this.matter.world.add(this.body);
// the diamond. It cannot fall off the car
this.diamond = this.matter.add.rectangle(posX, posY - 40, 30, 30, {
friction: 1,
restitution: 0,
label: "diamond"
});
// add front wheel. A circle
this.frontWheel = this.matter.add.circle(posX + 35, posY + 25, 30, {
friction: 1,
restitution: 0
});
// add rear wheel
this.rearWheel = this.matter.add.circle(posX - 35, posY + 25, 30, {
friction: 1,
restitution: 0
});
// these two constraints will bind front wheel to the body
this.matter.add.constraint(this.body, this.frontWheel, 40, 0, {
pointA: {
x: 30,
y: 10
}
});
this.matter.add.constraint(this.body, this.frontWheel, 40, 0, {
pointA: {
x: 45,
y: 10
}
});
// same thing for rear wheel
this.matter.add.constraint(this.body, this.rearWheel, 40, 0, {
pointA: {
x: -30,
y: 10
}
});
this.matter.add.constraint(this.body, this.rearWheel, 40, 0, {
pointA: {
x: -45,
y: 10
}
});
}
// method to accelerate
accelerate(){
this.isAccelerating = true;
}
// method to decelerate
decelerate(){
this.isAccelerating = false;
}
update(){
// zoom is calculated according to car speed.
// zoom = 1: no zoom
// zoom > 1: zoom in
// zoom < 1: zoom out
let zoom = 1 - Phaser.Math.Clamp(this.body.speed, 0, 15) / 25
// zoomTo method allows the camera to zoom at "zoom" ratio in 1000 milliseconds
// the most important argument is the 4th argument.
// If set to "false", camera won't adjust its zoom if already zooming.
this.cameras.main.zoomTo(zoom, 1000, "Linear", false);
// make the game follow the car
this.cameras.main.scrollX = this.body.position.x - game.config.width / 4 + game.config.width * (1 - this.cameras.main.zoom);
this.cameras.main.scrollY = this.body.position.y - game.config.height / 2.2
// adjust velocity according to acceleration
if(this.isAccelerating){
let velocity = this.frontWheel.angularSpeed + gameOptions.carAcceleration;
velocity = Phaser.Math.Clamp(velocity, 0, gameOptions.maxCarVelocity);
// set angular velocity to wheels
this.matter.body.setAngularVelocity(this.frontWheel, velocity);
this.matter.body.setAngularVelocity(this.rearWheel, velocity);
}
// loop through all mountains
this.mountainGraphics.forEach(function(item){
// if the mountain leaves the screen to the left...
if(this.cameras.main.scrollX > item.x + item.width + game.config.width){
// reuse the mountain
this.mountainStart = this.generateTerrain(item, this.mountainStart)
}
}.bind(this));
// get all bodies
let bodies = this.matter.world.localWorld.bodies;
// loop through all bodies
bodies.forEach(function(body){
// if the body is out of camera view to the left side and is not yet in the pool..
if(this.cameras.main.scrollX > body.position.x + game.config.width && this.bodyPoolId.indexOf(body.id) == -1){
// ...add the body to the pool
this.bodyPool.push(body);
this.bodyPoolId.push(body.id);
}
}.bind(this))
}
// method to apply a cosine interpolation between two points
interpolate(vFrom, vTo, delta){
let interpolation = (1 - Math.cos(delta * Math.PI)) * 0.5;
return vFrom * (1 - interpolation) + vTo * interpolation;
}
}
And now you can play your Riksy Road prototype in portraid mode while keeping the playability. Download the source code.
Never miss an update! Subscribe, and I will bother you by email only when a new game or full source code comes out.