Talking about Block it game, Box2D, Game development, HTML5, Javascript, Phaser and TypeScript.
“Block it” game concept can be developed in a lot of ways, and we already saw how to build a HTML5 prototype using Phaser and Arcade Physics or using a custom continuous collision detection, getting rid of physics engines.
Now we are going to build the prototype using Box2D, which is much more complex and realistic than Arcade Physics, and in this case the drawback is Box2D is too much realistic.
If we want a ball to bounce over an edge, we need to set friction, mass, elasticity and even more properties, and there is no way to make speed increase at each contact.
Well, actually there is a way, using custom contact callbacks, which is one of the most confusing features of Box2D, along with compound objects, and in this prototype I am using them both, showing you they are quite easy to understand.
Let’s see what we are going to build:
It may seem a simple circle running inside a square, and actually it is, but the “square” is a compound object and the circle is gaining speed as it hits the square.
This wouldn’t be possible in Box2D, and some bounces where angle of ball speed is very similar to angle of the wall being it would cause the ball to roll over the ball rather than bouncing. Realistic, but not what we want.
About the compound object, it’s a normal Box2D body with more than a fixture linked to it. A body with two box fixtures will result in an object made of two boxes. I already played with compound objects in AS3 fourteen years ago then wrote a HTML5 version powered by Phaser but the best way to see then in action is on the official Planck/Box2D example. And by reading this post, of course.
About collision management, Box2D allows us to use listeners to trigger contact events, so my idea was to listen for the pre-solve event, which is fired after collision detection, but before collision resolution, and post-solve which is fired after collision resolution.
In pre-solve I am calculating the bounce angle without worrying about mass, elasticity, friction, and so on, and in post-solve I update the speed increasing it.
Let’s see the source code, made of one html file, one css file and 7 TypeScript files.
index.html
The web page which hosts the game, to be run inside thegame element.
<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="initial-scale=1, maximum-scale=1">
<link rel="stylesheet" href="style.css">
</style>
<script src="main.js"></script>
</head>
<body>
<div id="thegame"></div>
</body>
</html>
style.css
The cascading style sheets of the main web page.
* {
padding : 0;
margin : 0;
}
canvas {
touch-action : none;
-ms-touch-action : none;
}
gameOptions.ts
Configurable game options. It’s a good practice to place all configurable game options, if possible, in a single and separate file, for a quick tuning of the game.
// CONFIGURABLE GAME OPTIONS
export const GameOptions = {
// unit used to convert pixels to meters and meters to pixels
worldScale : 30,
// ball radius, in pixels
ballRadius : 25,
// ball start speed, in meters/second
ballStartSpeed : 2,
// ball speed increase at each collision, in meters/second
ballSpeedIncrease : 0.3
}
main.ts
This is where the game is created, with all Phaser related options.
// MAIN GAME FILE
// modules to import
import Phaser from 'phaser';
import { PreloadAssets } from './preloadAssets';
import { PlayGame } from './playGame';
// object to initialize the Scale Manager
const scaleObject : Phaser.Types.Core.ScaleConfig = {
mode : Phaser.Scale.FIT,
autoCenter : Phaser.Scale.CENTER_BOTH,
parent : 'thegame',
width : 750,
height : 750
}
// game configuration object
const configObject : Phaser.Types.Core.GameConfig = {
type : Phaser.AUTO,
backgroundColor : 0xfe5430,
scale : scaleObject,
scene : [PreloadAssets, PlayGame]
}
// the game itself
new Phaser.Game(configObject);
preloadAssets.ts
Here we preload all assets to be used in the game, such as the sprites used for the ball.
// CLASS TO PRELOAD ASSETS
// this class extends Scene class
export class PreloadAssets extends Phaser.Scene {
// constructor
constructor() {
super({
key : 'PreloadAssets'
});
}
// method to be execute during class preloading
preload(): void {
// this is how we preload an image
this.load.image('ball', 'assets/ball.png');
}
// method to be called once the instance has been created
create(): void {
// call PlayGame class
this.scene.start('PlayGame');
}
}
planckUtils.ts
Just a couple of functions because Box2D works with meters while Phaser and most frameworks work with pixels. Here is where we convert pixels to meters and meters to pixels.
import { GameOptions } from './gameOptions';
// simple function to convert pixels to meters
export function toMeters(n : number) : number {
return n / GameOptions.worldScale;
}
// simple function to convert meters to pixels
export function toPixels(n: number) : number {
return n * GameOptions.worldScale;
}
playGame.ts
Main game file, all game logic is stored here.
// THE GAME ITSELF
import * as planck from 'planck';
import { GameOptions } from './gameOptions';
import { PlanckCompound } from './planckCompound';
import { PlanckBall } from './planckBall';
import { toPixels } from './planckUtils';
// this class extends Scene class
export class PlayGame extends Phaser.Scene {
// Box2d world
world : planck.World;
// the ball
theBall : PlanckBall;
// planck compound object
theCompound : PlanckCompound;
// graphics objects to render the compound object
compoundGraphics : Phaser.GameObjects.Graphics;
// keep track of the number of bounces to restart the demo at 50
bounces : number
// constructor
constructor() {
super({
key: 'PlayGame'
});
}
// method to be executed when the scene has been created
create() : void {
// zero bounces at the beginning
this.bounces = 0
// just a couple of variables to store game width and height
let gameWidth : number = this.game.config.width as number;
let gameHeight : number = this.game.config.height as number;
// world gravity, as a Vec2 object. It's just a x, y vector
let gravity = new planck.Vec2(0, 0);
// this is how we create a Box2D world
this.world = new planck.World(gravity);
// add the planck ball
this.theBall = new PlanckBall(this, this.world, gameWidth / 2, gameHeight / 2, GameOptions.ballRadius, 'ball');
// give the ball a random velocity
this.theBall.setRandomVelocity(GameOptions.ballStartSpeed);
// add the planck compound object
this.theCompound = new PlanckCompound(this.world, gameWidth / 2, gameHeight / 2, 350)
// add simulation graphics
this.compoundGraphics = this.add.graphics();
// add an event listener waiting for a contact to solve
this.world.on('post-solve', () => {
this.theBall.handleBounce(this.theBall.angleToReflect, GameOptions.ballSpeedIncrease);
// increase number of bounces
this.bounces ++;
// restart the game if bounces = 50
if (this.bounces == 50) {
this.scene.start('PlayGame');
}
})
// add an event listener waiting for a contact to pre solve
this.world.on('pre-solve', (contact : planck.Contact) => {
// get edge fixture in this circle Vs edge contact
let edgeFixture : planck.Fixture = this.getEdgeFixture(contact);
// get edge body
let edgeBody : planck.Body = edgeFixture.getBody();
// get edge shape
let edgeShape : planck.Edge = edgeFixture.getShape() as planck.Edge;
// did the ball just collided with this edge?
if (this.theBall.sameEdgeCollision(edgeShape)) {
// disable the contact
contact.setEnabled(false);
// exit callback function
return;
}
// get edge shape vertices
let worldPoint1 : planck.Vec2 = edgeBody.getWorldPoint(edgeShape.m_vertex1);
let worldPoint2 : planck.Vec2 = edgeBody.getWorldPoint(edgeShape.m_vertex2);
// transform the planck edge into a Phaser line
let worldLine : Phaser.Geom.Line = new Phaser.Geom.Line(toPixels(worldPoint1.x), toPixels(worldPoint1.y), toPixels(worldPoint2.x), toPixels(worldPoint2.y));
// determine bounce angle
this.theBall.determineBounceAngle(worldLine);
})
}
// method to get the edge fixture in a edge Vs circle contact
getEdgeFixture(contact : planck.Contact) : planck.Fixture {
// get first contact fixture
let fixtureA : planck.Fixture = contact.getFixtureA();
// get first contact shape
let shapeA : planck.Shape = fixtureA.getShape();
// is the shape an edge? Return the first contact fixture, else return second contact fixture
return (shapeA.getType() == 'edge') ? fixtureA : contact.getFixtureB();
}
// method to be called at each frame
update() : void {
// advance the simulation by 1/30 seconds
this.world.step(1 / 30);
// crearForces method should be added at the end on each step
this.world.clearForces();
// update ball position
this.theBall.updatePosition();
// draw walls of compound object
this.theCompound.drawWalls(this.compoundGraphics);
}
}
planckBall.ts
Custom class extending Phaser.GameObjects.Sprite to define the planck ball as a Phaser sprite.
import * as planck from 'planck';
import { toMeters, toPixels } from './planckUtils';
// this class extends planck Phaser Sprite class
export class PlanckBall extends Phaser.GameObjects.Sprite {
// planck body
planckBody : planck.Body;
// ball speed
speed : number;
// last collided edge, to prevent colliding with the same edge twice
lastCollidedEdge : planck.Edge;
// angle to reflect after a collision
angleToReflect : number;
constructor(scene : Phaser.Scene, world : planck.World, posX : number, posY : number, radius : number, key : string) {
super(scene, posX, posY, key);
// adjust sprite display width and height
this.displayWidth = radius * 2;
this.displayHeight = radius * 2;
// add sprite to scene
scene.add.existing(this);
// this is how we create a generic Box2D body
this.planckBody = world.createBody();
// set the body as bullet for continuous collision detection
this.planckBody.setBullet(true)
// Box2D bodies are created as static bodies, but we can make them dynamic
this.planckBody.setDynamic();
// a body can have one or more fixtures. This is how we create a circle fixture inside a body
this.planckBody.createFixture(planck.Circle(toMeters(radius)));
// now we place the body in the world
this.planckBody.setPosition(planck.Vec2(toMeters(posX), toMeters(posY)));
// time to set mass information
this.planckBody.setMassData({
// body mass
mass : 1,
// body center
center : planck.Vec2(),
// I have to say I do not know the meaning of this "I", but if you set it to zero, bodies won't rotate
I : 1
});
}
// method to set a random velocity, given a speed
setRandomVelocity(speed : number) : void {
// save the speed as property
this.speed = speed;
// set a random angle
let angle : number = Phaser.Math.Angle.Random();
// set ball linear velocity according to angle and speed
this.planckBody.setLinearVelocity(new planck.Vec2(this.speed * Math.cos(angle), this.speed * Math.sin(angle)))
}
// method to check if an edge is the one we already collided with
sameEdgeCollision(edge : planck.Edge) : boolean {
// check if current edge is the same as last collided edge
let result : boolean = this.lastCollidedEdge == edge;
// update last collided edge
this.lastCollidedEdge = edge;
// return the result
return result;
}
// method to handle bounce increasing speed number
handleBounce(angle : number, speedIncrease : number) : void {
// increase speed
this.speed += speedIncrease;
// set linear velocity according to angle and speed
this.planckBody.setLinearVelocity(new planck.Vec2(this.speed * Math.cos(angle), this.speed * Math.sin(angle)));
}
// method to determine bounce angle against a line
determineBounceAngle(line : Phaser.Geom.Line) : void {
// get linear velocity
let velocity : planck.Vec2 = this.planckBody.getLinearVelocity();
// transform linear velocity into a line
let ballLine : Phaser.Geom.Line = new Phaser.Geom.Line(0, 0, velocity.x, velocity.y);
// calculate reflection angle between two lines
this.angleToReflect = Phaser.Geom.Line.ReflectAngle(ballLine, line);
}
// method to update ball position
updatePosition() : void {
// get ball planck body position
let ballBodyPosition : planck.Vec2 = this.planckBody.getPosition();
// update ball position
this.setPosition(toPixels(ballBodyPosition.x), toPixels(ballBodyPosition.y));
}
}
planckCompound.ts
Custom class to define the planck compound object.
import * as planck from 'planck';
import { toMeters, toPixels } from './planckUtils';
export class PlanckCompound {
// planck body
planckBody : planck.Body;
constructor(world : planck.World, posX : number, posY : number, offset : number) {
// this is how we create a generic Box2D body
let compound : planck.Body = world.createKinematicBody();
// set body position
compound.setPosition(new planck.Vec2(toMeters(posX), toMeters(posY)))
// add edge fixtures to body
compound.createFixture(planck.Edge(new planck.Vec2(toMeters(0), toMeters(-offset)), new planck.Vec2(toMeters(offset), toMeters(0))));
compound.createFixture(planck.Edge(new planck.Vec2(toMeters(offset), toMeters(0)), new planck.Vec2(toMeters(0), toMeters(offset))));
compound.createFixture(planck.Edge(new planck.Vec2(toMeters(0), toMeters(offset)), new planck.Vec2(toMeters(-offset), toMeters(0))));
compound.createFixture(planck.Edge(new planck.Vec2(toMeters(-offset), toMeters(0)), new planck.Vec2(toMeters(0), toMeters(-offset))));
// give the compound object a random angle
compound.setAngle(Phaser.Math.Angle.Random());
// assign the body to planckBody property
this.planckBody = compound;
}
// method to draw compount walls in a Graphics game object
drawWalls(graphics : Phaser.GameObjects.Graphics) : void {
// clear the graphics
graphics.clear();
// set line style to one pixel black
graphics.lineStyle(1, 0x000000);
// loop through all body fixtures
for (let fixture : planck.Fixture = this.planckBody.getFixtureList() as planck.Fixture; fixture; fixture = fixture.getNext() as planck.Fixture) {
// get fixture edge
let edge : planck.Edge = fixture.getShape() as planck.Edge;
// get edge vertices
let lineStart : planck.Vec2 = this.planckBody.getWorldPoint(edge.m_vertex1);
let lineEnd : planck.Vec2 = this.planckBody.getWorldPoint(edge.m_vertex2);
// turn the planck edge into a Phaser line
let drawLine : Phaser.Geom.Line = new Phaser.Geom.Line(
toPixels(lineStart.x),
toPixels(lineStart.y),
toPixels(lineEnd.x),
toPixels(lineEnd.y)
);
// stroke the line shape
graphics.strokeLineShape(drawLine);
}
}
}
And two of the most difficult Box2D concepts have been explained in a matter of minutes with a real world example. Next time I’ll turn this prototype into a more playable stuff, meanwhile download the source code.
Never miss an update! Subscribe, and I will bother you by email only when a new game or full source code comes out.